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Abstract

This paper provides new exponent and rank conditions for the
existence of abelian relative (p?,p®, p®, p®~?)-difference sets. It is also
shown that no splitting relative (22¢,2¢, 22¢, 22¢=4)_difference set exists
if d > ¢ and the forbidden subgroup is abelian. Furthermore, abelian
relative (16,4, 16,4)-difference sets are studied in detail; in particular,
it is shown that a relative (16,4,16,4)-difference set in an abelian group
G % Zg x Zy x Zy exists if and only if exp(G) < 4 or G = Zg x (Z9)?3
with N = Z2 X Z2.

1 Introduction

A relative (m,n, k, A)-difference set (RDS) in a finite group G of order mn
relative to a normal subgroup N of order n is a k-subset R of G such that
every element of ¢ € G \ N has exactly A representations ¢ = riry ' with
r1,79 € R and no nonidentity element of N has such a representation. The
notion of relative difference sets was introduced by Bose (1942) and Elliott,
Butson (1966). For a detailed survey on RDSs, see Pott (1996). The investi-
gation of relative difference sets is of great interest because of their connection
to design theory: Relative difference sets are equivalent to certain divisible
designs with point regular automorphism group, see Beth, Jungnickel, Lenz
(1986); in particular, certain types of projective planes correspond to relative
difference sets [see Pott (1996)].

Furthermore, relative difference sets can be used to construct generalized

Hadamard matrices and sequences with good autocorrelation properties [see
de Launey (1994) and Pott (1996)].



Recently, the research concentrated on RDSs with parameters (m,n, k, \) =
(p%, p°, p®, p*?) [Brock (1993), Davis (1991,1992,1992a), Davis and Seghal
(1994), de Launey and Vijay Kumar (1994), Ma and Pott (1996), Ma and
Schmidt (1995)]. In his above mentioned survey, Pott says that in his opinion,
the existence problem of (p?, p®, p?, p~*)-RDSs is one of the most interesting
questions about RDSs. In this paper, we will focus on this problem.

In order to describe RDSs effectively we will use the notation of the group
ring ZG. A subset R of G is a relative (m,n, k, A)-difference set in G relative
to N if and only if the equation

RRCY = keg 4+ A(G — N)

holds in ZG, where we identify a subset A of G with the element }° .4 g in
ZG and write RCY = {r~! :r € R}.

Two RDSs R, R’ in G are called equivalent if there is an automorphism « of
G and an element g of G such that {a(r)g: 7 € R} = R'.

It is well known that, if G is abelian, a k-subset R of G is a relative
(m, n, k, \)-difference set relative to N if and only if

k if xy€ G\ N*
X(R)x(R) =< k—An if x € N*\ {xo}
k? if X = Xxo

for every character x of G, where N+ = {x € G* : x is principal on N} and
Xo is the principal character of G.

In the following, we list some results which will be needed in the further
sections. Throughout this paper, group homomorphisms will be extendend
to the group rings in the natural way. We begin with a well known lemma.

Lemma 1.1 Let G be a finite group of order mn, let U be a normal subgroup
of order u of G and let p: G — G /U be the canonical epimorhism. If R is a
(m,n,k,\)-RDS in G relative to a normal subgroup N of G, then

p(R)p(R)Y =k + u\(G/U) — I[N NU|NNU/U).

In particular, if U < N, then p(R) is a (m,n/u,k,u))-RDS in G/U relative
to N/U (in this situation we say that R is a lifting of p(R)).

Before we can state a very useful result of Turyn we need a definition.
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Definition 1.2 Let p be a prime and let m be a positive integer. We write
m = p*m’ with (m',p) = 1). We call p selfconjugate mod m iff there
exists a positive integer i with p* = —1 mod m'.

Remark. In particular, p is selfconjugate mod p® for every b > 0.

Result 1.3 (Turyn (1965)) Let £ be a complex m-th root of unity and let
p be a prime which is selfconjugate mod m. If X € Z[E] satisfies

XX =0 mod p*,

then we have
X =0 mod p°.

Result 1.3 is frequently used in connection with Ma’s Lemma, which is one
of the most important tools in the theory of difference sets and relative
difference sets.

Lemma 1.4 (Ma’s Lemma, Ma (1985)) Let p be a prime and let G be a
finite abelian group with a cyclic Sylow p-subgroup. If Y € ZG satisfies

x(Y) =0 mod p*
for all nontrivial characters x of G, then there exist X1, Xy € ZG such that
Y = anl + PXQ:

where P is the unique subgroup of order p of G.
Furthermore, if Y has only nonnegative coefficients, then X1 and Xs can be
chosen to have nonnegative coefficients only.

The following lemma due to Ma and Pott (1995) has the same goal as Ma’s
Lemma: Conversion of character equations into equations in ZG.

Lemma 1.5
(a) Let P be a cyclic group of order p' where p is a prime. Let P; be the
unique subgroup of order p* of P (0 <1i <t). If A € ZP satisfies

x(A)x(4) = p*



for all x € P*\ PnL where 1 < n <t andn < a, then we have

n—1
A - Z em(pa—mpm - pa—m—lpm+1)gm + PnY
m=0

with €, = +1, g, € P andY € ZP.
(b) Let G =< g > be a cyclic group of order 2' and let G; be the unique
subgroup of order 2¢ of G (0 <1 <t). If A€ ZG satisfies

X(A)x(4) = 2%+

for all x € G*\ G, where 1 <n <t—1 andn < a+ 1, then we have

n?’

n—1
A= Z XnGmgm + GLY

m=0

with ¢, € G,
Xm — 2a—m—1(1 + g2t—m—2 . gQ.Qt—m—2 B g3,2t—m—2)

form <a—1 and
X, =1—g" 2

Finally, we recall a well known theorem of Kronecker.

Result 1.6 (Kronecker) Let & be a complex m-th root of unity. If x € Z[€]
has modulus 1, then © = +£¢ for a suitable rational integer i.

2 Existence results

In this section we summarize the known existence results for (p?, p°, p%, p2~?)-
RDS. It should be mentioned that for b = 1 there are more constructions than
in general case. We refer the reader to Ma, Schmidt (1995) where the case
b =1 is studied in detail.

Result 2.1 (Elliott, Butson (1966))

(a) Let p be an odd prime and let a, b be positive integers with a > b. Then
there is a (p%, p°, p®, p* °)-RDS in EA(p**?).

(b) Let ¢ be a positive integer. Let G = (Z4)° and let N be the unique
subgroup of G isomorphic to (Zs)¢. Then there is a (2¢,2%,2°,1)-RDS in G
relative to N.



Result 2.2 (Davis (1992)) Let p be a prime and let G be an abelian group
of order p*** where k < c. Furthermore, we assume rank(G) > p“™*. Let

N be an arbitrary subgroup of G isomorphic to (Z,)***. Then G contains a
(p?, p*, p*¢, p?=*)-RDS relative to N.

Result 2.3 (Leung, Ma (1990)) Let s, d, r, t be positive integers with
r<sandt<d. Wewrite s=ar+0b where a and b are nonnegative integers
with b < r. Let p be a prime and let N be an arbitrary (possibly nonabelian)
group of order p'. Then there is a (p**?, p', p?*?, p?*¢4)-RDS in

(Zyai1)?® X (Zpa )20 x N

P

relative to N.

The following product construction essentially goes back to Davis (1991).

Result 2.4 Let G be a group of order mimaon. Let Hy be a subgroup of G
and let Hy and N be normal subgroups of G with |Hi| = min, |Hs| = man,
IN| =n and HHN Hy = N.

If R; is an (m;,n, m;,;m;/n)-RDS in H; relative to N, i = 1,2, then

R1R2:{7j7“227”1 ERl, T2 ERQ}

is an (myma,n, mims, mymso/n)-RDS in G relative to N.

3 Exponent bounds

Using the arguments of Turyn (1965) one can prove the validity of following
the exponent bound.

Result 3.1 (Davis(1992a), Pott(1994)) Let G be an abelian group of or-
der p®*® and let N be a subgroup of order p® of G. A (p*, p°, p®, p* °)-RDS in
G relative to N can only exist if

a+1

exp(G) < p % exp(N).

This bound is not entirely satisfactory as it ignores the position of N in the
underlying group which sometimes is relevant. With a more detailed analysis
we can prove a slightly stronger result.
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Theorem 3.2 Let G be an abelian group of order p*t® and let N be a sub-
group of order p® of G. We write N as direct product of cyclic groups:

N=<n>X<ng>X---Xx<ng>.

Let 7 be a cyclic subgroup of G. If U := ZNN # 1, then we write U =< u >,
Ul =p,

with (a;,p) = 1 and we set m = min{z; : 1 = 1,2,...,t}. If G contains a
(pa,pb,p“,p“’b)—RDS relative to N, then

a+3

() |Z|<p=z ifZNN =1 and
(b) |Z| < p UM if ZAN £ 1.

Proof. Let R be a (p%p°, p% p® ®)-RDS in G relative to N.

(a) Let ZNN = 1. By elementary character theory we can choose a character
x of G with Kerx|z =1 and |Kerx|n| = |N|/p. We write K = Kery. Let
p: g — G/K be the canonical epimorphism. The coefficients of p(R) are
obviously < |K|/|K N N| < p*™'/|Z|. Now the assertion follows from Result
1.3 and Ma’s Lemma.

(b) Let Z N N # 1. We choose a character X' of G with |Kery'|z| = p¥~!
and |Kery'|y| = |[N|/p™"!. The assertion follows as in (a). O

Example.
By Theorem 3.2 (a) there is no (p*, p?, p*,p)-RDS in Z,: X N relative to N
where N is cyclic of order p®. This RDS can not be excluded by Result 3.1.

Another exponent bound is due to Pott (1994) who generalized an ad-hoc
argument of Hoffmann (1952):

Result 3.3 Let G be an abelian group of order p®*® and let N be a subgroup

of order p° of G. If G contains a (p®,p°, p®, p®~°)-RDS relative to N,then
ezp(G) < p*
orp=2,a=>b=1.

Ma and Pott (1995) were able to prove the following strong bounds.
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Result 3.4 Let p be a prime.

(a) Let G be an abelian group of order p and let N be a subgroup of
order p° of G. If there exists a (p?**!,p°, p?2+t p?a=*1)_RDS in G relative to
N, then

2a+b+1

exp(G) < p*tt

if p is odd and
exp(N) < 2041

ifp=2.
(b) Let G be an abelian group of order p***® and let N be a subgroup of G of
order p°. If there exists a (p*?, p°, p*®, p**=*)-RDS in G relative to N, then

exp(N) < p°.

Using the method of Ma and Pott (1995) and some additional arguments we
can improve Result 3.4 (a) for p = 2.

Theorem 3.5 Let G be an abelian group of order 22¢1%+1 and let N be a sub-
group of order 2° of G. If G contains a (22071, 20, 2201 92a=b+1)_R DG relative
to N, then

exp(G) < 22,

Furthermore, if exp(N) < exp(QG), then
exp(N) < 2°.

Proof. Let R be a (22¢t1 2b 92a+l 92a~b+1) RS relative to N. We write
exp(GQ) = 2t

(a) By Result 3.4 (a) we have exp(N) < 247!, We will show that the as-
sumption exp(N) = 247! < 2! leads to a contradiction proving the second
assertion of the Theorem 3.5. Let G’ be a cyclic group of order 2¢ and let
p: G — G’ be an epimorphism with [p(N)| = 24+,

Application of Lemma 1.5 (b) yields

a—1
p(R) = Z Gmegm + 6aC"Ya.(1 - 92tia72)ga + Ga+1Y
m=0
using the notation of 1.5 (b). Without loss of generality we assume g, = 1.
Let x be a character of G'/G,y1. If we view YV as an element of Z(G'/Gy.1)



we get
2% i x = xo
xY)=< 0 if2<o(x) <22
—1 if o(y) = 207271,

Hence the coefficient of 1 in Y is
1
27t+a—|—1 2(1. _ 2t7a72 _ 22a—|—17t = Z
( ) 2 ¢ )

a contradiction.

(b) We have to show exp(G) < 2472, By Result 3.4 (a) and part (a) of the
proof we can assume exp(N) =: 2" < 2% Let G’ be a cyclic group of order
2" and let p: G — G’ be an epimorphism with [p(N)| = 2". By Lemma 1.5
(b) we get (using the notation of this lemma)

n—1
p(R) = Z emGmXmm + GrY
m=0
with
t—m—2 t—m—2 t—m—2
Xm _ 2a—1—m(1 _|_92 _ 92-2 _ g3-2 )

for all m. Since x(Y) = 0 for all characters x of G’ which are nonprincipal
on (G, we infer
GnY — 22a+17tGl.

Without loss of generality let go = 1. We write
p(R)=A+B+C
with
A = 2@—1(1 —|—g2t72 _ 92-2'5*2 _ g3-2f*2)
+2a—2(1 +g2t—3 o g2-2t—3 _ gs-Qt—3)
n—1
B = Z Gmegma

m=2

C _ 22a+17tGl'

It is easy to see that we always can find an element of G’ whose coefficient in
A is less or equal —2%71. The coefficients of B are less or equal 2473 4 2¢~% 1
o 207" < 2972 This implies

_2(1—1 _|_ 2a—2 _|_ 22a+1—t > 0’
hence t < a + 3. O
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4 Further exponent and rank conditions

In this section we prove two new nonexistence theorems using the techniqes
developed by Ma and Schmidt (1995, 1995a). To this end we will need the
following lemmas contained in Ma and Schmidt (1995, 1995a).

Lemma 4.1 Let p be a prime, let G be a finite abelian group with Sylow
p-subgroup P and let go € G be an element of order exp(P). We write p° =
|P|/exp(P) and P ={U < P : |U| =p°, UN < go >= 1 and P/U is cyclic}.
Furthermore, we set U' = {g : ¢*° € U} for U € P where s is a positive
integer with p* < exp(P).

Moreover, we assume that there is a subset D of G such that for every U € P
and g € G either

(1) |DNUR| > 6 and |D N (U'\ U)h| < € for a suitable h € U'g or

(2) [IDNU'g| < ¢

where 0,¢,€', 6 > € are fized positive integers not depending on U. Further-
more, we assume that there is at least one coset U'g satisfying condition (1).
We write t = rank(P), P =< g, > X < g1 > X--+X < g;_1 > where
0(g0) = exp(P) and o(g;) = p* fori=1,2,....,t—1. We set b; = min{s,a;}.
Then

c—ibi
d—me<p =

form=1,2 .. t—1.

Lemma 4.2 Le p be a prime and let G = A x B x H be an abelian group
with A~ (Zpe)®, B=< 1> X < 2> X=X < B >, o(8;) = p¥ < p? for
t

1<j<tand(p,|H|)=1 Wesete=a(s—1)+ ¥ by,
j=1
P={W<A:|W|=p*Y and A/W is cyclic}
and
R={Wx < By >x-xX<By>WEeEP,vy € A,o(y) <p“}.
If a subset D of G satisfies

x(D) = 0 mod p°



for all nonprincipal characters x of G, then D can be written as

D=3 UXy+KY

UeR

with Xy, Y C G, where K is the unique maximal elemantary abelian subgroup
of A.

Now we are ready to prove our main theorems.

Theorem 4.3 Let p be an odd prime, let G be an abelian group of order
p*™ and let N be a subgroup of G of order p°. Let R be a (p*?, p°, p*, p®*~0)-
RDS in G relative to N. Furthermore, we assume that G contains an element
go of order p®*™*2 (r > 0). We write G as a direct product of cyclic groups:

G=<go>X<g1>X X< g1>
with o(g;) = p% fori=1,2,...,t — 1. We set
b,(s) = min{a;, s}
fors=1,2,..,r+1,1=1,2,...,t—1 and

V]
U NN

p¥ = max{ U <G U =p" "2 UN < go >=1,G/U = Zpasriz}

(note that by Result 3.4 (b) p¥ < exp(N) < p*). Then

o N ()
a S 1 a—r—2 _ a—y < atb-r=2 ;bi
p* —m(p’ = 1)(p P ) <p i

fors=1,2,..,r+1 and m=1,2,....t — 1.

Proof. Let U be an arbitrary subgroup of order p®t®="=2 of G such that
G/U is cyclic and UN < gop >= 1. From Theorem 3.2 (a) it is clear that
N £ U. Let p: G — G/U be the canonical epimorphism. By Result 1.3
and Ma’s Lemma p(R) must have at least one coefficient greater or equal
p®. On the other hand, the coefficients of p(R) are obviously less or equal
\U|/|U N N|. This implies p* < |U|/|U N N|, and hence we have

|N| P N|
N — > fr
(V)| \UNN| — |U|

r42
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We write |p(N)| = p® with £ > r+2. By result 3.4 (b) we can assume z < a.
By Lemma 1.5 (a) we get (using the notation of this lemma)

z—1
p(R) = Z 671110(1_m_l(l7pm — Prg1)gm + pa_T_QPa-l-rJrQ- (1)
m=0

We claim
€ =€ =+ =641 =1 and Figy = Pg; (2)
fort=0,1,...,7+ 1.
We prove (2) by induction. For g € G/U let C(g) be the coefficient of g in
p(R).
(a) We assume €y = —1. Then by (1) (recall that p # 2)
C(gO) < _pa +pa—1 _|_pa—1 _ pa—2 _|_pa—2 4. _|_pa—x—|—1 _ pa—m +pa—r—2
— _pa 4 2pa—1 _ pa—a: _|_pa—r—2 < 0’
a contradiction. Hence ¢y = 1.

b)Lel <l <r+1,6 =¢€¢ =---=¢1 = 1and Pgg = Py, for
i=0,1,...,1 — 1. We have to show ¢, = 1 and P,go = P,g;. From (1) we have

z—1

p(R) - (pa - pailpl)go + Z empaimil(ppm - Pm—|—1)gm + pair72Pa+r+2-

m=l

Let ¢' € Pigo \ {90} If ¢ = —1 or Pigg # Pg;, then

C(g') < _pafl _|_pafl71 _|_pafl71 o pafl72 4 pafw—}—l . pafw _|_pafrf2
_pa—l + 2pa,—l—1 _ pa—m _|_pa—7'—2 < O,

a contradiction. Thus we have proved (2). Hence we get

z—1
p(R) - (pa _paﬂ"iQPH—?)gO_i“ Z 6mpaimil(pf)m _Pm—l—l)gm +pair72Pa+r+2
m=r+2
from (1). We infer
C(go) > pa _ pa—r—2 _|_pa—r—3 _ pa—r—?) 4— = pa—m—l—l _|_pa—z
_ pa o pa—r—2 +pa—w
C(h) S _pa—r—2 4 pa—r—2 _ pa—r—3 . _|_pa—z+1 _ pa—m _|_pa—r—2
_ pa—r—Z _ pa—x
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for h € Pry2go \ {90} and

C(h,) < pa—r—Q _ pa—'r—3 T pa—r—3 — e pa—z—l—l _ pa—a: _|_pa,—1"—2

a—r—2 _ _,a—-T

D

for b € (G/U)\ Pr1290- As p(R) has at least one coefficient greater or equal
p® we get C(go) > p®. Now we apply Lemma 4.1 with

o = pf
€ = (ps _ 1)(pa—r—2 _ pa—y)’
6’ — ps(2pa7r72 _ pafy)
proving the theorem. O

The following theorem deals with an extreme case of Theorem 3.2.

Theorem 4.4 Let G be an abelian group of order p**** and let N be a sub-
group of order p® of G. We write N as a direct product of cyclic groups:

N=<n>X<ng>X--X<ng>.

Le Z be a cyclic subgroup of G with U := Z NN # 1. We write U =< u >,
Ul =p",

with (a;,p) = 1 and we set m = min{z; : o(n?") > p¥}.
If G contains a (p*®, p°, p*®, p** °)-RDS relative to N and if

2] =y,
then y =1 and m = 0.

Proof. Without loss of generality let a« > 2. By elementary character theory
we can choose a charcter x of G with Kernx|;z = 1 and |Kerny|nx| = p* ¥ ™.
We set K = Kerny|y. Let p: G — G/K be the canonical epimorphism.
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We write R = p(R), G = p(G), Z = p(Z) and N = p(N). Then R is a
(p?®, pvt™, p?e, p??~¥=m)_RDS in G relative to N. We write

G‘=<go>><<gl>><---><<gt>.

with o(gy) = p**¥*™, < g, >= Z and o(g;) = p% for i = 1,2, ...,t. By Result
1.3 an Lemma 4.2 we get

pl—1p®2-1 pit—1 Zzp aty+m—a; atytm-1
Z Z Z ® < 9190 > Xil,’iz,...,it_l_ < g(z)J >Y

11=0 22=0 1+=0

(® denotes the internal direct product) for suitable Y, X;, ;, i, C G. Let n
be a complex p**t¥*™-th root of unity. Let X;, 4,...;, be the characters defined
by
Xir izt (90) = 1
and s
_ s maty+m—a
X’i1,i2,...,it(gl) =1 p l'

aty+m—a;

Since N ¢ @'_, < gigi” > we have

pa = |Xi1,i2,---,it(R)| = pa|Xi1,i2,---,it(Xi1,i2,---,it)|' (3)
This implies | X

visyiz| = 1 for all 41,49, ...,4%; and Y = 0. Hence we have

a1 1pa2 1 pat 1 ot
Z Z Z <® < a9 lea y+m—ay >> géil,iz ..... it (4)

11=0 42=0 it=0 \Il=1

with suitable integers €;, 4, .. ;-
Let Xjo.j1,..,. be the characters defined by

X30sdt st (90) njop
and
Xjosjis- Jt(gl) gt TS
for jo = 0,1,...,p**¥*™ " — 1 and j, = 0, 1,...,p* — 1. Obviously, we have
Xiovjirnje (F2) = 0, if (51, p) = 1 for at least one [ > 1. Hence

|NL\ — p a pa+y+m—1(p _ 1)pa—1 = (p— 1)p2a—|—y+m—2 (5)

ift > 1 Ift =1, then there surely exists a character y apart from the
characters Xjoji....j; With x(R) = 0 (recall a« > 1). Thus (5) holds in every
case. Hence y +m = 1 which implies y = 1 and m = 0. a
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Corollary 4.5 A (p?,p°, p?®, p*@ )-RDS in an abelian group G of exponent
p*t? exists if and only if b = 1.

Proof. For b > 1 the assertion follows from Theorem 3.2 and Theorem 4.4,
and for b = 1 it is contained in Theorem 2.4 of Ma and Schmidt (1995). O

5 (222 2P, 222 222"P).RDSs with b > a are spe-
cial

By Result 2.2 a (22¢,2° 224 22¢=5)_RDS in an abelian group G exists if b < a
and rank(G) > 24T, Let us compare this with the following remarkable
result is due to Ganley (1976) (for a short proof we refer the reader to Jung-
nickel (1987)).

Result 5.1 Let G be an abelian group of order 2°¢ and let N be a subgroup
of order 2¢ of G. A (2¢,2%,2,1)-RDS in G relative to N exists if and only if
G is isomorphic to (Z4)¢ and N is isomorphic to (Zs)°.

Something must have happened with the (222,20 222 22a=0).RDS “on the
way” from b = a to b = 2a. Our next theorem shows what happens and
where it happens.

Theorem 5.2 Let H be an arbitrary (possibly nonabelian) group of order 22¢
and let N be an abelian group of order 2°t'. Then the group G = H x N
cannot contain a (224,271 220 20=1)_RDS relative to N.

Proof.

Let R be a (2%¢,2¢%1 224 2¢~1) RDS in G relative to N. We write exp(N) =
2¢. Let p : G — G/H the canonical epimorphism. We write R = p(R) and
N = p(N). Let £ a complex 2°-th root of unity. By Result 1.3 and Result
1.6 we have

x(R) € {2%¢" :i=0,1,...,2° = 1}

for all x € N*\ {xo}, where j is the principal character of N. Furthermore,
Xo(R) = 2%¢. We set

T—{xeN":x(R) ¢ Z}.
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Since the minimum polynomial of £ is 2% +1 and

> x(R) € Z,

XEN*

we conclude |T'| = 0 mod 2 and Y. x(R) = 0. This implies
x€T

Y xR) = 22+ X x(R)

XEN* XEN*\T
X#X0

= 2% mod 2°t1,

However, by the Fourier inversion formula this is impossible as the coefficient
of 1in R is an integer. O

6 (16,4,16,4)-RDSs:
An unimaginative approach

This section is designed to stress our ignorance about (p?, p°, p®, p® ®)-RDS
with b > 1. We will see that even the smallest interesting case, i.e. p = 2,
a =4 and b = 2, requires a lot of work. First of all, we summarize what we
know about (16,4, 16,4)-RDS from the previous sections.

Theorem 6.1

(a) There is no (16,4,16,4)-RDS in any abelian group of exponent > 16.

(b) The groups (Z3)® and Z, x (Zy)* contain (16,4,16,4)-RDS for all possible
N.

(c) The groups (Zy)? x (Z3)* and Zg X (Z3)* contain (16,4,16,4)-RDS for all
N = ZQ X ZQ.

Proof.
Part (a) follows from Result 3.1 and Corollary 4.5.
The parts (b)and (c) follow from the Results 2.2 and 2.3. O

There is one further result due to Davis and Seghal (1994):

Result 6.2 There is a (16,4,16,4)-RDS in (Z4)? for all N 2 Zy X Zs.
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Nevertheless, it is clear that we are still far away from having a necessary
and sufficient condition for the existence of abelian (16,4, 16,4)-RDSs. In
the following we will prove some interesting new results on these RDSs us-
ing the “lifting-method”: By the results of Ma and Schmidt (1995) we can
determine the structure of (16,2, 16,4)-RDSs in abelian groups of exponent
8 completely; using some character arguments we will decide if a lifting of
such an RDS to a (16,4, 16,4)-RDS is possible. In the case of (16,4, 16,4)-
RDSs in abelian groups of exponent 8 which can not be projected down to
a (16,2,16,4)-RDS in an abelian group of exponent 8, we will have to use
Lemma 1.5.

We begin with the characterisation of some (16,2, 16,4)-RDSs. For the proof
of Theorem 6.3 and Theorem 6.4 see Example 3.7 and Example 3.10 of Ma
and Schmidt (1995).

Theorem 6.3 Let R be a (16,2,16,8)-RDS in G = Zg x Z, relative to
N =< (0,2) >. Then (up to equivalence)
R = <(2,1)>(1,0)+ < (6,1) > (3,0)
+ < (4,0) > [(0,41) + (2,41) + (0,4) + (2,49 + 2)]
where (i1,12) € {(0,1),(0,3),(1,0),(1,2),(2,1),(2,3),(3,0),(3,2)}.

Conversely, each of the sets R defined above is a (16,2,16,8)-RDS in G rel-
ative to N.

Theorem 6.4 Let R be a (16,2,16,8)-RDS in G = Zg x Z, relative to
N =< (4,0) >. Then (up to equivalence)

R = <(0,1)>+4 < (2,1) > (51,0)
+<(4,1) > (2,0)+ < (6,1) > (s9,0)
where (51: 82) € {(1: 3)7 (1a 7)5 (3: ]-)a (3, 5)}
Conversely, each of the sets R defined above is a (16,2,16,8)-RDS in G rel-
ative to N.

Theorem 6.5 Let R be a (16,2,16,8)-RDS in G = Zg X Zy X Zy relative to
N =< (0,1,0) >. Then (up to equivalence)

R=<(4,1,0),(0,0,1) > + < (4,1,0),(4,0,1) > (y,0,0)+ < (4,0,0) > Ry
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where either y = 1 and

Ry = ¢1(2,0,0) + g2(2,0,1) + g3(3,0,0) + 94(3,0, 1)
ory =2 and

Ry = ¢1(1,0,0) + g2(1,0,1) + g3(3,0,0) + ¢4(3,0, 1)

with g; € N, where exactly one element or excactly three elements of the
multiset {g1, 92, g3, 94} are equal to (0,0,0).

Conversely, each of the sets R defined above is a (16,2,16,8)-RDS in G rel-
ative to N.

Proof. By Theorem 3.9 of Ma and Schmidt (1995) we have

R = <(4,1,0),(0,0,1) > (z,0,0)+ < (4,1,0),(4,0,1) > (y,0,0)
+ < (4,0,0) > Ry,

where z and y are integers and Ry is a 4-element subset of G. Considering
some automorphisms and translates, we obviously can assume x = 0 and
y € {1,2}. If y =1 then w.lo.g.

Ry = ¢1(2,0,0) + ¢2(2,0,1) + g3(3,0,0) + ¢4(3,0, 1)

where g; € N, and it is easy to see that R is a (16,2,16,8)-RDS in G relative
to IV if and only if the condition given in the theorem is satisfied.
Similarly we settle the case y = 2. a

Theorem 6.6 Let R be a (16,2,16,8)-RDS in G = Zg X Zy X Zy relative to
N =< (4,0,0) >. Then (up to equivalence)

R = <(0,1,0),(0,0,1) > + < (0,1,0), (4,1,0) > (21,0, 0)
+ < (4,1,0),(0,0,1) > (z5,0,0)+ < (4,1,0), (4,0,1) > (3,0,0)
where (z1,xs,23) is from
{(1,2,3),(1,2,7), (1,3,6), (1,6,7),(2,1,3), (2, 1, 7), (2, 3,5), (2,5, 7)}.

Conversely, each of the sets R defined above is a (16,2,16,8)-RDS in G rel-
ative to N.
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Proof.

The assertion follows easily from Theorem 3.6 of Ma and Schmidt (1995). o
Using these characterizations as described above we get the following theo-
rem.

Theorem 6.7

(a) A (16,4,16,4)-RDS in an abelian group G % Zg x Z4 X Zy exists if and
only if exp(G) < 4 or G = Zg X (Zy)® with N =2 Zy x Zy.

(b) Let G =Zg X Zy X Zs.

(i) There is a (16,4,16,4)-RDS in G relative to < (4,0,0),(0,2,0) >.

(i) There is no (16,4,16,4)-RDS in G relative to < (2,0,0) >, < (0,1,0) >,
< (4,0,0),(0,0,1) > or < (0,2,0),(0,0,1) >.

The existence part of Theorem 6.7 follows from Theorem 6.1, Result 6.2 and
the following theorem that gives some new RDSs. These were constructed
(by hand) by lifting suitable (16,2, 16, 8)-RDSs which can be found in Ma,
Schmidt (1995), Theorem 2.1.

Theorem 6.8

(a) There is a (16,4,16,4)-RDS in (Z4)? x (Zy)? relative to < (1,0,0,0) >.
(b) There is a (16,4, 16,4)-RDS in Zgx Z4 x Zs relative to < (4,0,0),(0,2,0) >.
(c) There is a (16,4,16,4)-RDS in (Z4)* relative to < (1,0,0) >.

Proof.
(a) We set

R = <(0,2,0,0),(0,0,1,0) > (0,1,0,0)
+(2,0,0,0) + (0,0,1,0) + (1,2,0,0) +(3,2,1,0)
+[(2,0,0,0) + (1,0,1,0) + (0,2,0,0) + (3,2,1,0)](0, 3,0, 1)
+[(0,0,0,0) + (3,0,1,0) + (1, 2,0,0) + (2,2,1,0)(0,0,0, 1).

(b) We set

R = (0,0,0)+ (0,1,0)+ (0,0,1) + (0, 3,1)
+[(0,0,0) + (4,3,0) + (0,0,1) + (4,1,1)](1,0,0)
+[(0,0,0) + (0,3,0) + (4,0,1) + (4,1,1)](2,0,0)
+[(0,2,0) + (4,3,0) + (4,2,1) + (0,1, 1)](3, 0, 0).
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(c) We set

R' = <(0,2,0),(0,0,2) >

+(0,1,0) + (3,3,0) + (2,1,2) + (1, 3,2)
+(0,0,1) +(2,2,1) + (1,0,3) + (3,2, 3)
+(0,1,1) +(3,3,1) + (1,1,3) + (2,3, 3).

Using characters it is easily seen that R, R' and R" are the required RDS.

Now we turn to the nonexistence part of Theorem 6.7. Since this requires
lenghty proofs with lots of case distinctions we only give some examples for
the nonexistence proofs; all other proofs are similar. The complete proof of
Theorem 6.7 can be found in Schmidt (1994).

Theorem 6.9 There is no (16,4,16,4)-RDS in G=Zg x Zg relative to
N =< (2,0) >

Proof.
Let R be such an RDS. By Theorem 4.3 it is clear that we can assume

R = (0,1)g1 +(1,3)g2 + (2,5)g5 + (3,7)gs
+(0,3)g5 + (1,1)gs + (2,7)g7 + (3,5)gs
+(i1,0)g9 + (i1, 2)g10 + (i2,0)g11 + (i2 + 2,2)g12
+(41,4)g13 + (71,6)g14 + (2,4)g15 + (12 + 2,2)g16

where g; €< (4,0) > for j =1,2,...,16 and
(11,42) € {(0,1),(0,3), (1,0), ( ,2),( 1),(2,3),(3,0),(3,2)}. Weset ¢; = 1if
g; = (0,0), and ¢; = —1 if g; = (4,0). We define the characters xo, X1, X2, X3
of G by xx(1,0) = & for k = 0,1,2,3, x0(0,1) = 1 and xx(0,1) = &% for
k =1,2,3, where £ is a complex eighth root of unity. We put the ¢; into a
matrix:

€1 €2 €3 €

€5 € €7 €8

€ €10 €11 €12

€13 €14 €15 €16
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In the following matrices we write an m in the position of ¢; if the character
value of the term of R belonging to €; is ™. We get for xo, x1, X2, X3:

0 1 2 3
0 1 2 3
iy i iy (i +2) |7 6)
iy i iy (ig +2)
1 4 7 2
3 2 1 0 (7
i (42 iy (44 |7
(iy+4) (i1 +6) (i2+4) in
2 7 4 1
6 3 0 5
’il (’Ll + 4) 7:2 (’LQ + 6) ’ (8)
1 (i1 + 4) 19 (ZQ + 6)
3 2 1 0
1 4 7 2
b (h46) | )

(i +4) (i2+2) (2+4) (ia+4)

If for example iy = 0 and i, = 1, then we get (using Result 1.3 and Result

1.6) €3 = —e7 from (6), €3 = €5 (7), €, = €5 from (8) and €; = €; from (9), a
contradiction. Similarly we get contradictions for all other values of 7; and
19. O

Theorem 6.10 There is no (16,4,16,4)-RDS in G = Zg x (Zy)* relative to
N =< (2,0,0,0) >.

Proof. Let R be such an RDS. We write G =< g > XH and N =< g% >
with o(g) = 8. Let p1 : G = G =G/ < ¢g* > and py : G — G/p1(H) be the

canonical epimorphisms. By Result 1.3 and Lemma 1.5 (a) we have (using
the notation of Lemma 1.5)

p2(p1(R)) = £(4 — 2P1)go + 4P,
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W.lo.g. we can assume
p2(p1(R)) = 2 + 6k + 4(h + h®)
with po(p1(G)) =< h >. This implies
R=A+¢’B+gC+¢°D

with A, B,C,D c< g* > H, |A| = 2,|B| = 6, |C| = |D| = 4 and p;(A+B) =
p1(H). W.lLo.g we assume A = {1,a} with a €< ¢* > H \ {1}. Let x be
the character of G defined by x(g) = £ and x € H+. Hence a = ¢g*h’ for a
suitable ' € H\ {1}. Let 7 be a character of H with 7(h’) = —1. Obviously,
we have |x ® 7(R)| # 4, a contradiction. O

We conclude our paper with some remarks on Theorem 6.7.

1) Note that there are some open cases left if G = Zg x Zy X Zs.

2) Theorem 6.7 implies that - contrary to the case b = 1 - in general the
necessary and sufficient condition for the existence of abelian (p?, p°, p®, p®~°)-
RDSs can not be an exponent bound.

3) It seems to be very difficult to extend the lifting method used in Theorem
6.7 to attack the general case of abelian (p®, p°, p%, p® °)-RDSs. Despite the
results of this paper, a really satisfactory method is still missing.
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